High Temperature SiC Embedded Chip Module (ECM) with Double-Sided Metallization Structure
نویسنده
چکیده
The work reported in this dissertation is intended to propose, analyze and demonstrate a technology for a high temperature integrated power electronics module, for high temperature (e.g those over 200C) applications involving high density and low stress. To achieve this goal, this study has examined some existing packaging approaches, such as wire-bond interconnects and solder die-attach, flip-chip and pressure contacts. Based on the survey, a high temperature, multilayer 3-D packaging technology in the form of an Embedded Chip Module (ECM) is proposed to realize a lower stress distribution in a mechanically balanced structure with double-sided metallization layers and material CTE match in the structure. Thermal and thermo-mechanical analysis on an ECM is then used to demonstrate the benefits on the cooling system, and to study the material and structure for reducing the thermally induced mechanical stress. In the thermal analysis, the high temperature ECM shows the ability to handle a power density up to 284 W/in with a heat spreader only 2.1x2.1x0.2cm under forced convection. The study proves that the cooling system can be reduced by 76% by using a high temperature module in a room temperature environment. Furthermore, six proposed structures are compared using thermo-mechanical analysis, in order to obtain an optimal structure with a uniform low stress distribution. Since pure Mo cannot be electroplated, the low CTE metal Cr is proposed as the stress buffering material to be used in the flat metallization layers for a fully symmetrical ECM structure. Therefore, a chip area stress as low as 126MPa is attained. In the fabrication process, the high temperature material glass and a ceramic adhesive are applied as the insulating and sealing layers. Particularly, the Cr stress buffering layer is successfully electroplated in the high temperature ECM by means of the hard chrome
منابع مشابه
Packaging Technologies for High Temperature Electronics and Sensors
This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500°C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-...
متن کاملHybrid SiC Power Module with Low Power Loss
Mitsubishi Electric has developed a 1.7 kV hybrid SiC power module consisting of 6th generation Si-IGBT and SiC Schottky Barrier Diode (SBD). Adopting SiC-SBD enables a significant power loss reduction during the diode turn-off and IGBT turn-on. And adopting of 6th generation IGBT enables the reduction of the IGBT turn-off loss. By using the newly developed chip set, high temperature enduring g...
متن کاملHigh Temperature, High Power Module Design for Wide Bandgap Semiconductors: Packaging Architecture and Materials Considerations
Wide bandgap power semiconductors such as SiC or GaN can safely operate at a junction temperature of 500°C. Such a high operating temperature range can substantially relax or completely eliminate the need for bulky and costly cooling components commonly used in silicon-based power electronic systems. However, a major limitation to fully realizing the potential of SiC and other wide band-gap sem...
متن کاملA Universal Soi-based High Temperature Gate Driver Integrated Circuit for Sic Power Switches with On-chip Short Circuit Protection
In recent years, increasing demand for hybrid electric vehicles (HEVs) has generated the need for reliable and low-cost hightemperature electronics which can operate at the high temperatures under the hood of these vehicles. A high-voltage and high temperature gate-driver integrated circuit for SiC FET switches with short circuit protection has been designed and implemented in a 0.8-micron sili...
متن کاملCharacterization of Large Area 4H-SiC and 6H-SiC Capacitive Devices
SiC based capacitive devices have the potential to operate in high temperature, chemically corrosive environments provided that the electrical integrity of the gate oxide and metallization can be maintained in these environments. We report on the performance of large area, up to 8 x 10 -3 cm, field-effect capacitive sensors fabricated on both the 4H and 6H polytypes at 600°C. Large area capacit...
متن کامل